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Time domain modeling of damping using anelastic
displacement fields and fractional calculus
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Abstract

A fractional derivative model of linear viscoelasticity based on the decomposition of the displacement
field into an anelastic part and elastic part is developed. The evolution equation for the anelastic part is then
a differential equation of fractional order in time. By using a fractional order evolution equation for the
anelastic strain the present model becomes very flexible for describing the weak frequency dependence of
damping characteristics. To illustrate the modeling capability, the model parameters are fit to available
frequency domain data for a high damping polymer. By studying the relaxation modulus and the relaxation
spectrum the material parameters of the present viscoelastic model are given physical meaning. The use of
this viscoelastic model in structural modeling is discussed and the corresponding finite element equations are
outlined, including the treatment of boundary conditions. The anelastic displacement field is mathematically
coupled to the total displacement field through a convolution integral with a kernel of Mittag—Leffler
function type. Finally a time step algorithm for solving the finite element equations are developed and some
numerical examples are presented. © 1999 Elsevier Science Ltd. All rights reserved.

1. Introduction

The present study deals with the modeling of material damping. Energy dissipation is assumed
to occur within the continuum element. Material damping, is commonly quantified by a loss factor
which is the ratio of the energy lost to the maximum stored energy within the continuum element
under steady-state harmonic conditions. For linear materials the loss factor can also be expressed
as the ratio between the imaginary and real parts of the complex dynamic modulus. Material
damping is often approximated in the engineering community by a complex, frequency-inde-
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pendent dynamic modulus (i.e., by a constant loss factor). When extrapolated to the entire
frequency domain, this model represents a non-causal relation between excitation and response
(Crandall, 1970). Another model often used due to its mathematical simplicity and convenience is
the viscous model. In the viscous model, the stress is taken to be the sum of parts proportional to
the strain and the strain rate. In the frequency domain, the imaginary part of the corresponding
dynamic modulus is proportional to the frequency. The loss factor is thus proportional to the
excitation frequency. Unfortunately, this model is not appropriate to describe the dynamic behavior
of a wide class of nearly elastic materials. Instead, it is found experimentally that many engineering
materials show loss factors with relatively weak frequency dependence (Kimball and Lovell,
1927).

Time domain viscoelastic models can provide an accurate description of the actual dynamic
behavior of materials while guaranteeing causality. At present, these models are not widely used
in structural dynamics. The linear constitutive equation of classic viscoelasticity may be formulated
in three different forms. The first form contains several integer time derivatives of order one and
higher on both stress and strain. Many higher-order time derivatives on both stress and strain are
demanded to match the weak frequency dependence of the dynamic properties. This makes the
model cumbersome and it leads to higher-order equations of motion when incorporated into
structural dynamics. The second form involves convolution or Stieltjes integrals. To match the
integer derivative form the kernel should be taken as a sum of exponentially decaying terms. Once
more, to match the actual dynamic behavior many parameters are demanded which makes the
model cumbersome. The third form uses the concept of internal variables (e.g. taken as augmenting
thermodynamic fields (ATF) or anelastic displacement fields (ADF), see Lesieutre and Mingori
(1990) and Lesieutre and Bianchini (1995). The constitutive equation is then formulated as a set
of coupled equations. The governing differential equation for the internal variable is first-order in
time. However, many internal variables must be used to match the weak frequency dependence
over a broad frequency range which can make the model cumbersome for use in such circumstances.
Dovstam (1995) proposes an Augmented Hooke’s law (AHL), which is reported as an extended
formulation of classic viscoelasticity, to model three-dimensional damping in frequency domain
calculations. This formulation may also require many parameters to describe weak frequency.

Weak frequency dependence of dynamic properties of a viscoelastic material can also be
described by using fractional derivative operators in the constitutive relations. Bagley and Torvik
(1983a) showed very good agreement using only four parameters when they fit their fractional
derivative model of viscoelasticity to experimental data for a polymer. When this model is incor-
porated directly into a structural dynamics framework it leads to higher order equations of
motion (i.e. higher than order two in time). The increased order leads to several mathematical
disadvantages when solving the equations of motion (e.g., higher fractional-order initial conditions,
see Enelund and Olsson, 1995). To avoid the problem of high-order of equations of motion, a
form of the fractional calculus model of viscoelasticity involving a convolution integral with a
weakly singular kernel of Mittag—Leffler type can be used, see Enelund and Olsson (1995) and
Enelund and Josefson (1997). Little work considers finite element formulations and algorithms for
time integration of responses of viscoelastic structures with fractional derivatives constitutive
relations. One such work is Padovan (1987). In this work, the viscoelastic behavior is taken in
consideration by using a constitutive relation involving fractional derivative operators acting on
both stress and strain.
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A recent survey article of the research in the application of fractional calculus to solid mechanics
is given by Rossikhin and Shitikova (1997).

An alternative viscoelastic formulation reported to be suitable to model the weak frequency
dependence of the damping characteristics is the Golla—Hughes—McTavish mini-oscillator model
(Golla and Hughes, 1985; McTavish and Hughes, 1993). The mini-oscillator model employs a
somewhat different kernel or relaxation modulus compared to classical viscoelasticity (without
using fractional calculus operators). Another difference between the present ADF-model and the
GHM-model is that the ADF-model is a direct time domain model while the GHM-model is
transform-based.

In the present study a three-dimensional fractional derivative model of viscoelasticity is for-
mulated using the concept of internal variables modeled with anelastic displacement fields (ADF)
in complete analogy with Lesieutre and Bianchini (1995). The evolution equations for the internal
fields then contain general order derivative operators instead of first-order integer derivative
operators as in the initial ADF-model.

To illustrate the ability of the model to describe weak frequency dependence model parameters
are fitted to complex modulus data for a high damping polymer. Time domain expressions for the
corresponding stress relaxation modulus and the relaxation spectrum are presented. The use of
this fractional-order anelastic displacement field model in structural dynamics modeling is discussed
and the corresponding finite element equations are formulated. Finally, a time step algorithm for
solving the finite element equations is outlined and some numerical examples are given.

2. Linear viscoelasticity with anelastic displacement fields

We will now develop a time domain linear viscoelasticity model based on the decomposition of
the displacement field into an elastic and an anelastic part to model dissipative behavior. Isothermal
conditions are assumed throughout the present study. In general all field variables are functions
of time and space. However, when discussing constitutive relations the space dependence will be
suppressed. Cartesian components of tensors are denoted by subscript indices, while a subscript
index within parentheses denotes a specific variable or set of variables.

The total displacement is taken to be the sum of elastic and anelastic displacements (Lesieutre
and Bianchini, 1995)

u(x,t) = u"(x, 1) +u*(x,1) (1)
where u® is the elastic displacement field and #* is the anelastic displacement field which may be

expressed as a sum of N individual anelastic fields that correspond to different relaxation processes:

N

ut(x, 1) = ) upy(x, 1) 2)

n=1
We assume here equal spatial variation of the two displacement fields. The rotations and the strains
are assumed to be small (i.e., ¢} « 1) and the (infinitesimal) strain tensor is defined by (in tensor
notation)
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84/(0 = 1/2(”:',_/0) + ”_/,i(t)) = 1/2(UE/(Z) + ”/E:(f)) + 1/2(1/‘%'(1‘) + ”ﬁi(f))
= 8,»Ej(t) + 83(1) 3)

where differentiation is with respect to the space-coordinate and &}; is the elastic strain tensor and
¢y is the anelastic or creep strain tensor which also may be expressed as a sum of N individual
anelastic strains:

) = Y (0 @)

For convenience, strains and stresses are also expressed using compressed matrix notation (e.g.,
e=1[e & & & & & and 6=[0, 0, 03 0, 05 0d4") following the ordering con-
ventions

&l =&y, & =&, & =&, & =263, & =26, & =28,
and
0, =011, 0 =03, 03 =033, 04 =033, 05 =03, 0c=E&

The set of coupled equations forming the constitutive relation is determined from the following
quadratic Helmholtz free energy function (Lesieutre and Bianchini, 1995)

1 N N
A A A A
/= 5 | Bttt — 2Eijey Y. &+ 2 E oo i (5a)

n=1 n=1

or in compressed matrix notation

¢ 1 [ E —-E : —-E + —E7| [ & ]
& —-E E} 0 0 &)
_ 5b
4 20 & —E 0 Y O | g (56)
Lex ] L-E 0 0 = Ey ] [ &

where E;;, denotes the fourth-order tensor of instantaneous or unrelaxed material parameters and
E denotes the fourth-order tensor of anelastic material parameters corresponding to the n-th
anelastic strain, while E is the matrix representation of E;;, and E, are the matrix representations
of Ef- The two-coupled set of material constitutive equations can now be found from

of of
o, = 2o ore =~ (6a)
and
of of
U&m - — A Oraa)==—- (6b)

A
&ij(n) 08
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A

where o7}, are the anelastic stress quantities conjugate to &,

two set of constitutive relations:

,- Application of eqn (6) leads to the

N N
A A
6,/ = El/k/ <8k1_ Z Sk/(n)> oro = E <8— Z 8(")> (73)
n=1

n=1

A A A A A LA
Oijny = Eijklgkl _Ezjk/(n) Eriny OY Oy = Ee— E(n)s(n)a n=1,....N (7b)

We now limit ourselves to isotropic materials. In that case it is convenient to introduce the
deviatoric parts s;; of the stress tensor g;;, and e;; of the strain tensor ¢;

1
S = O'ij_gézjo'kka s; =0 (8a)

€ = Szjj_%éijgkka e; =0 (8b)
where d;; is the Kronecker delta symbol, 35,04 and ;e are the hydrostatic parts of the stress
tensor and the strain tensor, respectively. Using this decomposition and assuming isotropic anel-
astic behavior, we write the constitutive equation for the stress as

s5;(1) =2G (e,-,-(l) — 3 eﬁ(,l)(t)> (9a)
o () = 3K <8kk([) - Zl glék(n)(l)> (9b)

where G is the instantaneous shear modulus and K is the instantaneous bulk modulus. The
constitutive equations for the anelastic stress quantities can also be written as uncoupled equations
for the deviatoric and hydrostatic parts

Sﬁ(,,)(t) = 2Ge;(1) —2G{\,,)e$(n)(t), n=1,...,N (10a)
Gfk(n)(l) = 3Key (1) — 3K61)81ék(n)(l)3 n=1,...,N (10b)

where G{,, and K{), are the anelastic shear and bulk moduli corresponding to the n-th anelastic
strain, respectively. The constitutive equation for the stresses can be expressed in matrix notation
as

o(t) = KMy <8(l)— ; sﬁ,)(t)>+GMG <s(t)— ; sﬁ,)(t)> (11)
and
0, (1) = My (Ke(1) — KG, 0, (1) + M (Ge(1) — G 86, (1)) (12)

where
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(1 110 0 0] [ 43 —2/3 —2/3 0 0 O]

111000 —2/3 43 —=2/3 0 0 0

111000 —2/3 —2/3 4/3 0 0 0
MK= aMG=

000000 0 0 0 100

000000 0 0 0 010

100000 0 0 0 0 0 00 1|

2.1. Relaxation equation

The evolution or relaxation equations for the anelastic strains are in classical viscoelasticity
taken as first-order differential equations in time (cf. Lesieutre and Mingori, 1990; Enelund and
Olsson, 1995). By using fractional-order derivative operators in the evolution equations for the
anelastic strains, the viscoelastic model is potentially very useful for describing observed material
behavior accurately with few material parameters (cf. Bagley and Torvik, 1983a). The key effect
is that whole spectrum of dissipative mechanisms may be included in a single anelastic strain. The
fractional-order evolution equations for the anelastic strains are then written as (cf Enelund and
Olsson, 1995)

AG,,
D“G(M)e,{?(n)(l‘) - — % <€,-Aj(”) (t) - G( ) e,'j(t)>, O < O(G(n) < 1 n = 1, ceey N (133)
G(n)
1 AK,,
Da]{(n)g;c\k(n)([) = - W <8/ék(t) - Kv()gkk(t)>7 O < OCK(H) < 1 n= la sy N (13b)
K(n)

with
AG(H) - GZ/G?;,,) and AK(") = K2 /Kél)

where (AG,,/G)e,; is what makes s;;,, zero (i.e., the strain-dependent equilibrium value of ¢}},,) and
(AK,/K)ey is what makes oy, zero (i.e., the strain-dependent equilibrium value of &,). More-
over, bg(, and og, are the relaxation constant and the fractional-order of differentiation in pure
shear, while by, and ax, are the relaxation constant and fractional-order of differentiation in
hydrostatic deformation and D* is the generalized derivative operator of order «. A suitable
definition of differentiation of fractional-order for the application to viscoelasticity is (Oldham
and Spanier, 1974)

y B 1 E " x(1)
Dx(t):r(l_a) dl[JO (l—r)“dr} O<a<l1 (14)

where I' is the gamma function. From the definition of fraction-order differentiation above we
note that the fractional derivative operator is not a temporally local operator as the ordinary
integer derivative operator is, i.e., when calculating the integer-order derivative of function x it is
sufficient to know the function in an arbitrarily small interval close to ¢, but when calculating the
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fractional-order derivative of function x it is necessary to know the function in the whole interval
0, ).

Because eqns (13a) and (13b) are differential equations initial conditions are required. The
formal initial conditions are found to be (Enelund and Olsson, 1995)

D (ewled (07) =0, n=1,...,N (15a)
Di(liaK("))Sﬁk(n)(O_F) = O, n= 1,...,N (15b)

These initial conditions are (for og,, ok, €(0, 1)) integral conditions and allow for unbounded
strain histories. However, from a physical point of view, unbounded strains must be disqualified.
The initial conditions to eqns (13a) and (13b) can then be taken as

An©)=0, n=1,....N (162)
8/?/(()1)(0+) = 0; n= 1,. .. ,N (16b)

which are consistent with an instantaneous response at time 1 = 0% following Hooke’s elastic law
as seen from eqns (9a) and (9b) by introducing the initial conditions in eqns (16a) and (16b).

Consider a single anelastic displacement field (N = 1). This field may itself model a whole
spectrum of dissipative mechanisms. The anelastic strains can be eliminated from eqns (9a) and
(10a) by using the evolution equations in eqns (13a) and (13b). The deviatoric part s first eliminated
by applying the operator D*s to eqn (9a) and then using eqn (9a) in combination with eqn (13a).
The hydrostatic part is eliminated in the same manner. The results are:

0 (1) +bED™ 04 (1) = 3K &1 (1) + 3KDED ¢ (1) (17b)

where G, = G—AG is the long-time or relaxed shear modulus and K, = K—AK is the long time
or relaxed bulk modulus. Equations (17a) and (17b) are commonly referred to as the fractional
calculus model of viscoelasticity (here generalized to three-dimensional isotropic stress states). We
may now conclude that in the case of a single anelastic strain eqns (9a) and (10a) together with
eqns (13a) and (13b) are sufficient to describe the same viscoelastic behavior as eqns (17a) and
(17b).

In general relaxation times (bg and bg) and the fractional derivative exponents (ax and o) need
not to be equal. However, for a polycrystalline material with randomly oriented crystal directions
the order of fractional differentiations and the relaxation constants in deviatoric and hydrostatic
relaxation can be assumed to be equal (i.e., g = ax = wand b = bx = b). The relaxation equations
[eqns (13b) and (13a)] can then be written as the single matrix equation:

R 1/, AK AG
D (1) = _19“(8 (t)—<3KMK+2GMc>s(Z)) (18)

where
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43 —2/3 —2/3 0 0 0
—2/3 4/3 —=2/3 0 0 0
—2/3 —=2/3 43 0 0 0
M. — / / /
0 0 0 200
0 0 0 020
0 0 0 00 2
with the initial condition
eh0t) =0 (19)

Note that AK = AG = 0 yield ¢} = &y = 0 or ¢* =0, since ‘eigenfunctional’ solutions [i.e., the
solution to D%"(#)+ (1/b)e*(f) = 0 which, in principle, is the memory kernel in, e.g., eqn (20a)]
are disqualified by the initial conditions [e.g., eqns (15a)].

2.2. Convolution integral formulation

The anelastic strains can be interpreted as convolution integrals with the strain and a singular
kernel of Mittag—Leffler function type. By applying a Laplace transformation and a subsequent
inversion to eqns (13a) and (13b) with the initial conditions in eqns (15a) and (15b), we obtain
(see Enelund and Olsson, 1995)

AG, (" .
e;’?(n) (l) = G( ) J\ fl (n) (l_ f)eij dl (203)
0

with

d
Sim = — a(Exg(n)[_(t/bG(n))“G(”)]); t>0

AK,, (! .
8?](()1) (t) = Ié)j f‘2()l) (t - i)gkk dt (20b)
0

with

d
Sow = — &(Ea]{(")[_(l/bK(n))aK(")])a t>0

where f;, (#) and f,, are the memory kernels in pure shear and isotropic compression, respectively,
while E, is the a-order Mittag—Leffler function which is defined as (Bateman, 1955)

e uk

E,(u) =Y

K=o T(1+0k) 20

Consider the case of o, = ok, = 1, then the memory kernels f,,(¢) and f5,(?) in eqns (13a) and
(13b) become
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1 AG(") e fr"bG(n)’

n)
1 AK
fanll) = =gteT e, >0 (220)
K(n

which are the memory kernels corresponding to the classical Standard Linear Viscoelastic Solid.

Kernels functions of Mittag—Leffler function type were first introduced into viscoelasticity
of solids by Rabotnov (1980). The connection between the convolution integral description of
viscoelastic with kernels of Mittag—Leffler function type and fractional calculus model of vis-
coelasticity in operator form [cf. eqns (17a) and (17b)] was established by Koeller (1984). Con-
volution kernels of Mittag—Leffler type in dynamic analysis are also discussed in Tseitlin and
Kusainov (1990).

3. Viscoelastic functions

We now consider uniaxial constitutive behavior described by the following set of equations (in
analogy with the isotropic three-dimensional description above)

N
am=EGm—Z$ﬁﬁ (23)
n=1
and
Droegg (1) = — —— | &6y (D) — e ), 0<a<l n=1,....N (24)
by £

together with the initial condition
en(0%) =0 (25)
where E is the instantaneous modulus and AE,, is the relaxation strength corresponding to the n-

th anelastic strain related to the long time modulus through E,, = E—X)_, AE,.

3.1. On the dynamic modulus

The (complex) dynamic modulus E*(w) is defined by
a(w) = E*(w)e(w) (26)

where o(w) and ¢(w) are the Fourier transforms of stress and strain. By applying a Fourier
transformation to eqns (23) and (24) and eliminating the anelastic strains, we obtain the cor-
responding dynamic modulus as

N AFE,
E¥(w) = E-Y — " (27
n=1 1 + (b(n)lw)“(n)
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Fig. 1. Measured and predicted material loss factor for a high damping polymer. X-marks are from tabulated material
data, the continuous line is curved-fitted ADF-model with a single fractional order anelastic displacement field, the
dashed line, the dash—dotted line and the dotted line are curve fitted ADF-models with one, three, and five integer-order
anelastic displacement fields.

with the understanding that (iw)* should be interpreted as exp(iar/2) (w —i0")* where (see Gel’fand
and Shilov, 1964)

) e "w|* <0
(00" = { (28)

w* w>0

By using a fractional-order relaxation equation the often observed weak frequency dependence of
the dynamic modulus can be modeled accurately over several frequency decades with a single
anelastic field, while the use of integer-order relaxation functions will require several anelastic
strains to model the same behavior. To illustrate this material loss factors of the present model
(using one, three, and five, integer-order anelastic strains and one fractional-order anelastic strain)
are fit to tabulated loss factor data for the high damping polymer ISD112 (see Soovere and Drake,
1985; Lesieutre and Bianchini, 1995). The experimental data are taken at room temperature and
over a frequency range from w = 1 to w = 10 x 10° rad/s. Figure 1 shows the material loss factor
[i.e., the ratio between the imaginary part and real part of the dynamic modulus £*(w)] for ISD112
and the predicted model results using one, three, and five, integer-order anelastic fields (i.e., the
evolution equations for the anelastic strains are first-order differential equations) and one frac-
tional-order anelastic displacement (i.e., the evolution equations for the anelastic strain are frac-
tional-order differential equations). The model parameters are chosen so that difference between
the material data and model data are minimized in a least square sense. The corresponding material
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Table 1
Curve-fitted material parameters for ISD112 material
One fractional-order ADF AE = 1200 MPa b=245%x10""s o =0.675
E =1200.4 MPa, E, = 0.431 MPa
One integer-order ADF AE = 4.94 MPa b=156x10"°s
E =542 MPa, E,, = 0.482 MPa
Three integer-order ADF AE, = 0.147 MPa bay=11.3x10""s
E =12.1 MPa, E, = 0.444 MPa AE, = 0.753 MPa boy=0.763x107° s
AEs = 10.7 MPa ba =421x10"°s
Five integer-order ADF AE;, = 0.025 MPa by =0.116's
E=16.5MPa, E, = 0.435 MPa AE; = 0.089 MPa boy=124x1077s
AEs = 0.290 MPa ba=191x10""s
AE4 = 1.03 MPa buay=0317x10""s
AE s = 14.7 MPa bs=257x10"°s

parameters are given in Table 1 where E, = E—X)_ | AE, is the relaxed (or long-time, low-
frequency) modulus. As seen in Fig. 1, several anelastic fields and comparatively large number of
parameters must be used to match measured data, while a single anelastic strain governed by a
fractional-order equation seems to be sufficient to model measured data in the specific frequency
range.

Since the models are fitted in a specific frequency range, model accuracy outside the frequency
range is not guaranteed. We may note from Table 1 the considerable difference in the instantaneous
modulus between the integer-order models and the fractional-order model. In fact, the instan-
taneous modulus and the long-time modulus of the fractional-order ADF model in Table 1 are
the same as the experimentally found values for ISD112 (see Soovere and Drake, 1985). This
indicates that this fractional-order ADF model can predict instantaneous transient response of the
material more accurately.

3.2. On the stress relaxation modulus

The uniaxial stress relaxation modulus G(¢) is defined as the stress response to a unit step strain
applied at time 7 = 0. The (uniaxial) stress relaxation modulus is here derived by a Laplace
transform technique. The Laplace transform of the fractional-order derivative is (see Oldham and
Spanier, 1974)

n—1
Z[D*x(0](s) = s"L[x()](s)— >, D' *x(0™) (29)

k=0
where 7 is an integer such that n—1 < « < n. For simplicity we consider a single anelastic strain.
By applying a Laplace transformation to eqn (24), we obtain the Laplace domain anelastic strain

response to an imposed unit strain as
2= (30)
&) =——"""
E s(1+(bs)™)

and the time domain unit response can be found as the inverse Laplace transform
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A(t)—A—EQ*‘ L (0, t>0 (31)
“W T L(1+(bs)“>} ’

To obtain the inverse above we use the same approach as used by Enelund and Olsson (1995) to
obtain the memory kernel. Take ¢ > 0 so that |(bc) ™% < 1. Along the vertical line ¢ —ico to ¢+1ic0
in the s-plane we can write

1 k —[a(k+1)+1]
s(L+(bs)") ,E( D' (es) 32

which converges uniformly along the line in consideration. The unit response &5 (f) may now be
written as the line integral:

1 c+ioo c+io0 AE
8{?(1‘) — MJ A(s)esr ds = Z (_l)k J\ 7b(b ) [oc(k+l)+1]esr ds
_AE L
= Z (=D 2 [b(bs) D] (0), 1>0 (33)

The inverse of each term above is found in a standard table of inverse Laplace transforms (e.g.,
Oberhettinger and Badii, 1973) and we obtain

(l/b)m(k+1) AE = (l/b)xk

raanin - £ 2 Tarny 70 (34)

B0 =5 ¥ 1

Insertion of &} (7) into eqn (23) gives the stress response to a unit strain or the stress relaxation
function as

G(t):E—AEi(—l)"“M t>0 (35)
K= [(ak+1)’
or, in Mittag—Lefller notation
G(t) = E-AE(1—E,[—(t/b)*]), t>0 (36)

which can be generalized to N anelastic fields as

G(1) = E—ni AE,,(1—E,, [—(t/by)™]), >0 37)
In the special case of o, = 1, we have

G(t)=E— i AE, (1 —e"Pw) (38)

The series of exponentials in eqn (38) is known as the Prony Series. Using Stirling’s formula for
asymptotic expansion of the gamma function for large arguments the asymptotic behavior of the
k-th term (S,) in the sum in eqn (35) as k — oo is found as
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(Z/b)okarl (_1)k+l(t/b)ock

o =(—1 k+1 ~

Se=(=D I'(ek+1) [(2m) e~ @D (g 1)+ 172 (39)

For a given time the ratio test gives
Ske1 1h Y
~ 4

‘ S, <ock+cc+1 >, sk (40)

The series is convergent but the convergence is poor and we need to add
t/b—1—
PR (41)

o

before the terms begin to fall in magnitude. Due to the rather poor convergence of the series the
expression for the relaxation modulus eqn (35) is not of practical use for increasing times and
there is a need for an asymptotic expansion of G(¢) for large times. To obtain such an expansion,
we utilize the same mode of reasoning used by Enelund and Olsson (1995). Taking the Laplace
transform of G(¢) according to eqn (35) and expanding it for small s > 0 yields

S

E 0
G(s) ~ < IN2DY (—1)"(bs)“k1>, 50 (42)

A formal term-wise inversion yields the time domain asymptotic expansion of G(¢) as t —» oo as

G(1) ~ E—AE<1+ > (_l)kﬂ(l/b)ak),

< T(—ak+1) (43)

where any term with ok — 1 equal to an integer drops out of the sum. (They represent terms with
a concentrated support at r = 0.) The definition of the gamma function is extended to negative
non-integer arguments by analytical continuation. The short time and long time values of the
stress relaxation modulus can now be found from eqns (35) and (43) as

li%q G() =FE and fllglo G(H=EFE, (44)

Figure 2 shows the stress relaxation modulus according to eqn (35) for different values of the
fractional derivative exponent « and for E/E_ = 2. The asymptotic expression in eqn (43) is used
then displaying the stress relaxation modulus for large times. By employing a fractional-order
derivative exponent in the relaxation equation the present viscoelastic model becomes capable of
describing stress relaxation over many time decades. Further, the viscoelastic parameters can be
found from time domain relaxation tests.

3.3. On the relaxation spectrum

The relaxation spectrum is an alternative way of representing the mechanical properties of a
viscoelastic material. The relaxation spectrum, H(t) shows the distribution of relaxation times and
is usually defined in terms of the relaxation modulus as
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Fig. 2. Normalized stress relaxation function G(¢)/E vs non-dimensional time z/b. Results are given for E/E,, = 2. The
influence of different values of the fractional derivative exponent « in the relaxation equation is shown.

0

(Hﬂzijﬁk’“dmﬂ+EgG@ (45)

which may be written as
* H ,
ag:Jiﬂfwm+a: (46)
0

It would be more straightforward to define the relaxation spectrum as H(t)/t in eqn (46), however,
this definition is not commonly used and the difference between the two definitions is only a matter
of scaling. Relaxation spectra are often used for characterizing viscoelastic models derived by
molecular theories. In fact, Bagley and Torvik (1983b) showed that the use of fractional derivative
operators in viscoelasticity can be motivated by Rouse’s molecular theory, although they did not
use the concept of relaxation spectrum.

By applying a Laplace transformation in eqn (46) and using the change of variable 1 = 1/p, the
relation between the relaxation modulus and the relaxation spectrum can be written as

A G, *H(l/p) 1

where G(s) is the Laplace domain relaxation modulus. By the replacement of s with —w+ie in
eqn (47) and making use of the following relation for the Dirac Delta distribution ¢
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im———— = 3(p+w) (48)
S (p—w) 48

the relaxation spectrum can be expressed as

N

H(ljo) = — %s (m [G(s) - Gw} | ) (49)

where 3 denotes imaginary part. Introducing G(s) as the Laplace transform of the relaxation
modulus according to eqn (35) gives the following expression for the stress relaxation spectrum:

AE b)* si
H@) =" (1-/1) Sin(72) _, O<an<nm (50)
T 142(t/b)* cos(na) + (t/b)
The peak value is given by
AE
H(t=b) = %tan(mxﬂ) (51)

When specializing to o = 1 (i.e., a single internal variable with an integer-order relaxation function),
we obtain

* H
H(t=b)—> +00 asoa—1" and J S)draAE asa— 17 (52)

0

and the expression for the relaxation spectrum corresponding to the single internal variable with
an integer-order relaxation function may be written as

Hf) — AES(t—b) (53)

which is well-known (see Nowick and Berry, 1972). This can be generalized to N ‘integer-order’
relaxation processes as

H(T) = Zl AE(n)a(T - b(n)) (54)

n=

Figure 3 shows the relaxation spectrum according to eqn (50) for different values of «. It can be
observed that the spectrum peaks more sharply as o approaches one, as expected. The relaxation
constant b can now be regarded as the most probable relaxation time out of a continuous spectrum
with the fractional derivative exponent o as the distribution variable, see Fig. 3. We observe that
relaxation spectrum for integer-order relaxation functions are discontinuous (one peak for each
process), while the fractional-order relaxation function displays a continuous relaxation spectrum.
This is consistent with the idea that a continuous spectrum of damping mechanisms or internal
variables might be modeled using a single mechanism or internal variable having a fractional-
order evolution equation.
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Fig. 3. Non-dimensional relaxation spectrum (H(t)/AE) or distribution of non-dimensional relaxation times (z/b). The
influence of different values of the fractional derivative exponent « in the evolution equation for the anelastic strain is
displayed.

4. Finite element formulation

We now consider a single anelastic displacement. For convenience we rewrite the equations
governing the constitutive response in eqns (11) and (18) as

AK AG
6(t) = KMy (&(t)— 75‘*(0 +GMg | e(t)— ?EA(I) (55)
AK AG -
b*D*g* (1) = e(t) —8* (1) where #* = <3KMK + 2GMC> (1) (56)
We can express the anelastic strain quantity vector as the convolution
1 R ) d
& (1) = Jf(f—f)d(f) dr with f{r) = — (B[ /b)), >0 (57)
0

It is clear that the two fields above have equal spatial variation.

In accordance with a displacement based finite element formulation the total displacement field
and anelastic displacement field (corresponding to &) within an element are expressed in terms of
interpolations of the corresponding total and anelastic degree-of-freedom vectors

u(x, 1) = N (x)d (1) (58a)
i (x, 1) = Nod™ (1) (58b)
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where superscript ¢ denotes an elemental property, /N is the element shape function matrix, & is
the element total nodal degree-of-freedom vector and d*° is the element anelastic degree-of-freedom
vector. The element total strain vector &° and the element anelastic strain vector &*° are related to
corresponding element total nodal degree-of-freedom vector and anelastic nodal degree-of-freedom
vector, respectively, as

&(x,t) =ou'(x,t) = ON°(x)d° () = B (x)d(¥) (59a)
2 (x, 1) = 0 (x, 1) = ON°(x)d" (1) = B (x)d"(7) (59b)

where B° is the element strain—displacement matrix and ¢ is the appropriate spatial derivative
matrix operator. Using the FE-formulations of the displacements and the strains in eqns (58a)—
(59b) together with the constitutive equation for the stresses in eqn (55) and the principle of virtual
work, it follows that the FE-equation for dynamic equilibrium can be written as

Md(t)+ Kd(1) — AKd" (1) = R(7) (60)

where M is the consistent mass matrix (py, and V7, are the density and volume of element k, while
NEL is the number of elements)

NEL
M=} J (Niwy) " Py Niw AV (61)
k=1JVy
K is the stiffness matrix
NEL
K= j (B?k))T(K(k)MK +GyMg)Bj, dV (62)
k=1Jv%
AK is the relaxation strength matrix
NEL
AK= Z J‘ (B?k))T(AK(k)MK+AG(/€)MG)B?1() dV (63)
k=1Jv%

and R is the external load vector, consistent with external body forces F and surface tractions @
(Sy is the surface area of element k).

R(1) = ZJ

k=10

(N*)'F ) (1) dV+J (N)' @, (1) dS (64)

Sk

Note that the system of FE-equations above is a system of second-order differential equations in
time, and thus only requires initial conditions on the physical quantities d and d. This is the same
formulation obtained if the convolution integral form of the constitutive equation is used (see
Enelund and Josefson, 1997).

To solve the system of FE-equations, we need an evolution equation for the anelastic dis-
placement vector. Restricting the formulation to materials for which eqn (56) is applicable and
expressing the strains in the corresponding deformations, yields the evolution equation in terms of
first-order spatial derivatives as

b*D*0ii* (x, 1) + 0t (x, £) — dii(x, ) = 0 (65)
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Equation (65) may be interpreted as a first-order (in space) differential equation. Introducing the
assumed strain fields eqns (59a) and (59b) into eqn (65) yields

B D*d™ (1) + Bd™ (1) — Bd(1) = 0 (66)

Multiplying eqn (66) from the left with the matrix transpose (B)", which can be taken as a weight
function, and integrating over the element volume and summarizing contributions from all the
elements yields a possible finite element formulation of eqn (65) as

C(H*D*d" (1) +d* (1) —d(1)) = 0 (67)

where C is a quadratic matrix

NEL
c=Y J (Bi) "By AV (68)
k=1 Jp

(k)

Equation (67) can be considered as fulfilling the spatial first-order partial differential equation
eqn (66) in a least square sense. This is the same approach as used by Enelund and Josefson (1997)
to obtain a spatial FE-discretization of the convolution term. Lesieutre and Bianchini (1995)
suggested to take the divergence of the evolution equations for the anelastic strains to obtain a set
of evolution equations for the anelastic displacements. This approach leads effectively to the same
result as eqn (67). In practice, the structure will be restrained so that the matrix C will never be
singular. Boundary conditions of the anelastic displacements will be discussed in Section 4.1.

4.1. Boundary conditions

In addition to the governing partial differential equations or the spatially discretized system of
FE-equations, we need boundary conditions for unique displacement solutions. This means in the
FE-formulation that the structural matrices M, K, AK and C all are singular if the structure is
unsupported. The total displacement field is treated as in the eclastic case, and either the (total)
displacement or the surface traction should be prescribed over the entire surface. The anelastic
displacement field is found to be subjected to analogous boundary conditions. Because the anelastic
displacement (strain) field is only driven by coupling to the total displacement (strain) field, it is
essentially an internal field, and it may not be prescribed; only the anelastic stress may be specified
over the surface. Using the material constitutive equations, the result is a mixed boundary
condition, which relates the anelastic strain, the total strain, and the anelastic strain rate. However,
the fact that the anelastic strains are driven exclusively by the total strains constrains the response
of the anelastic field in an important way. In a finite element context, the local strains have the same
spatial dependence (or variation) as the total strains. This means that the anelastic displacement has
a spatial dependence like that of the total displacement. This implies that the same displacement
boundary conditions that are applied to the total displacement field may be applied to the anelastic
displacement field.

Using the present formulation we can write the connection between the fields as [which can be
simplified assuming equal spatial variation see second part of eqn (69) below]
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i*(x, 1) = J ft—Du(x, ) di ord* = J flt—nd(H)d (69)

0

where f(¢) is the same kernel function as in eqn (57). This suggests that the ‘anelastic matrices’ AK
and C are restrained in the same manner as the stiffness matrix K. In the specific case of prescribed
zero boundary displacements both the total displacement field and the anelastic displacement field
should be taken as zero along the surface. However, this is just one way to restrain the anelastic
field #*. There are probably other ways to restrain #* (or u®).

4.2. Algorithm

By use of a time discretization of the Griinwald definition for differentiation of general order,
the a-order derivative of function x(¢) can be numerically evaluated by the following expression
(see Oldham and Spanier, 1974)

+Iyor, 1 n+1 . n+1—j
D*x = @ < x—i—j; B;(o) x) (70)
with
B(x) — I'(j—o)

I'(—o)'(j+1)

where 1 = nAt. Note that the initial value °x = x(7 = 0) is not included in the sum. The calculations
of ratios between gamma functions are simplified by the recursion formula

[(=0) _ (=-l-9T(—1-2)
FGg+1 J ()
Application of the Backward Euler approximation (in time) to eqn (67) while using eqn (70),
makes it possible to calculate the anelastic nodal degree-of-freedom vector (if the present nodal
degree-of-freedom vector and the complete previous history of the anelastic nodal degree-of-
freedom vector are known)
~ At/b)* 1 u -
n+ldA — ( / ) n+]d_ Z B/-(OC)I1+17‘1dA (72)
1+ (At/b)* 1+ (At/b)* =1
Note that the complete history of the anelastic nodal degrees-of-freedom should be saved and used
in each time step. ) )
Several methods for time integration of d and d exists. In the present study the Newmark method
will be used, due to its simplicity and well-known operational ability. The nodal degrees-of-freedom

and their first-order time derivatives at time ¢ = (n+ 1A)¢ are approximated by (see Cook et al.,
1989)

(71)

(An?
2

"l ="d+ Ar'd+ [(1—2B)"d+2p"*d] (73a)

and
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n+1"1 — I1d+AI[(1 _,y)na_i_,yn+1"1'] (73b)

with initial conditions °d = d, and °d = v,. The parameters  and y are chosen to control stability
and accuracy. With the Newmark expansions for d and d and the expression for calculating the
anelastic nodal displacements [eqn (67)] together with the system of FE-equations [eqn (60)]
evaluated at the end of each time step

Mn+1é+Kn+ld—AK"+lt~lA="+1R (74)

is it possible to calculate the four unknowns (d, d, d and d*).

A simple scheme is obtained by using the (nearly) explicit Newmark method [i.e., letting § equal
zero in eqns (73a) and (73b)]. In the undamped case the explicit Newmark method is conditionally
stable for y > 1/2 with the critical time step

2/y

max

Atcrit =

(75)

where .« i1s the highest undamped eigenfrequency of the discretized system (found by letting
AK = AG = 0 which implies d* = 0). Taking this time step as the critical time step in the present
damped case is believed to be conservative, since the stiffness of the structure decreases for
increasing times. Numerical experiments by Enelund and Josefson (1997) somewhat verifies that
the stability limit for the elastic case (using instantaneous material data) can be used in the case of
time integration of structures involving kind of viscoelastic material. Here we use the explicit
Newmark method with y = 1/2, which implies no numerical damping. The scheme for calculating
the four unknowns becomes very simple. The initial nodal acceleration solution vector °d is first
calculated from the dynamic FE-equation eqn (74). The updated nodal solution vector "*'d is
calculated directly from eqn (73a). The updated nodal anelastic solution vector "*'d* is now
obtained from eqn (67). Using this the updated nodal acceleration vector "* 'd is calculated from
eqn (74). The updated nodal velocity vector "*'d is calculated directly from eqn (73b) and a new
time step can be taken.

4.3. Alternative FE-formulation and algorithm

The structural response of viscoelastic structures governed by the present kind of fractional
derivative constitutive relations may also be obtained without using the concept of anelastic
displacements, as such see Enelund et al. (1996). A suitable method for obtaining structural
responses is as follows. With the application of the Backward Euler rule together with the Griinwald
algorithm eqn (70) to the evolution equation for the anelastic strains eqn (67) we have

1 AK AG " .
n+1gA At/b) [ — M, + — M, nt+lg B. n+1l—jaA 76
& l_l_(At/b)a <( / ) < K K G C) é j;l ./(OC) & > ( )
We write the system of FE-equations as
Md(1)+£(1) =0 with f(r) = f™ (1) — R() (77)

where f™ is the internal force vector corresponding to stresses ¢. Using the explicit Newmark
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method we obtain the updated nodal solution "*'d from eqn (73a). The updated spatial strain
distribution within an element is now obtained from the assumed strain field [cf eqn (592)]

n+1£e — Ben+lde (78)

With this and eqn (76) we obtain the updated element spatial distribution of the anelastic strain
"+1gAc The element spatial distribution of the stress "' is now given by the constitutive equation
eqn (11). The updated internal force vector is now obtained from

k=1 Jv{y

) NEL
n+ lfnt — Z J (B?k))TnJr 10'?/() dV (79)
v

Using this the updated nodal acceleration solution vector "*'d is obtained from eqn (77). With
this the updated nodal velocity solution "*'d is found from eqn (73b) and a new time step can be
taken. The advantage of using this formulation and algorithm is that no boundary conditions on
the internal fields need to be specified (however, there are generally equations for six strains, but
only three anelastic displacements).

5. Numerical examples

The transient response of a fixed-free uniform viscoelastic bar is calculated by the present time
domain finite element formulation using a single anelastic displacement field. The bar is modeled
by five linear bar elements. Bar geometry data are: length = 0.5 m and cross-sectional area = 0.0025
m?. The bar material has uniform viscoelastic properties and the following viscous material data
is used:

E=10MPa, AE=5MPa, b=0.02s and density p =1000kg/m’.

Different values of the fractional derivative exponent « in the evolution equation for the anelastic
displacement are used. Figure 4 shows the material loss factor corresponding to the present viscous
material data and the stress relaxation modulus is displayed in Fig. 2.

The finite bar element is derived using linear shape functions and the element matrices become

kS —k° AkS  —Ak® 2mt mt
K = , AK® = and M =
-k k° —Ak®  Ak° mt  2m°

where k°= EA°/LS, Ak® = AEA°/L® and m® = pA°L°/6. The (elastic) critical time step for the
spatially discretized bar is: Az; = 0.6 x 107 s. The lowest eigenfrequency of the discretized bar
using instantaneous unrelaxed material data is w,,;, = 315 rad/s, while if using long-time or relaxed
material data we have w,,;, = 222 rad/s. In all examples we normalize the tip displacement with
the quasistatic long time displacement, i.e.,
d L 40x10°° 80

it = —————— =40 x

stat A(E— AEv) m ( )
where F'is the applied static tip load.

In the first example the free end of bar is excited by a unit step load applied at time ¢ = 0. The
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Fig. 4. Material loss factor vs non-dimensional angular frequency wb for material data used. The influence of different
values of the fractional derivative exponent o is displayed.

bar is initially at rest. The time step used is At = 0.5A¢;,.. Figures 5 and 6 show the tip displacement
of the viscoelastic bar. The influence of different order of fractional differentiation in the evolution
equation is displayed. As seen in Fig. 5 the use of a fractional-order evolution equation leads to
faster decay of high frequency components. In Fig. 6 we observe that the time required to reach
the quasistatic long time solution increases considerably when using a fractional-order evolution
equation compared to using an integer-order evolution equation, consistent with the stress relax-
ation modulus in Fig. 2.

In the second example the free end of the bar is excited by a harmonic cosine load applied at
time ¢ = 0 with angular frequency Q = 500 rad/s. Figure 7 shows the tip displacement of the bar.
As seen in the figure, high frequency components are more damped and steady state solution is
reached faster with decreasing order of fractional differentiation in the evolution equation.

In all examples the fractional derivatives are obtained by the Griinwald algorithm and the
complete time history of the anelastic nodal degree-of-freedom vector eqn (67) is used in each time
increment. The time history can be truncated when a suitable convergence limit is reached. This
can simply be done by truncating the series then the next term modifies the sum less than a small
number.

6. Summary

A unique linear viscoelastic model combining the best features of anelastic displacement fields
model and the fractional calculus models is presented. The evolution (relaxation) equation for the
anelastic strain is taken as an in time differential equation of fractional-order. Viscoelastic function
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Fig. 5. Normalized tip displacement d/d,,, vs non-dimensional time ¢/b for step loaded viscoelastic bar. The load is
applied at time ¢ = 0. The influence of different values of the fractional derivative exponent is displayed.

Fig. 6. Normalized tip displacement d/d,,, vs non-dimensional time #/b for step loaded viscoelastic bar.
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Fig. 7. Normalized tip displacement d/d,,,, vs non-dimensional time ¢/b for viscoelastic bar subjected to a harmonic load
applied (cos Q¢ with Q = 500 rad/s) at time ¢ = 0. The influence of different values of the fractional derivative exponent
o is displayed.

like dynamic modulus, stress relaxation function and relaxation spectrum are presented. From the
relaxation spectrum we identify the relaxation constant in the fractional-order evolution equation
for the anelastic strain as the most probable relaxation times out of a continuous distribution of
relaxation times. The fractional derivative exponent then play the role of a distribution parameter.
Thus, by use of a fractional-order evolution equation a whole spectrum of dissipative mechanisms
may be included in a single anelastic strain. In order to illustrate the modeling capability model
parameters were fitted to tabulated frequency domain data for a high-damping polymer. By using
a fractional-order evolution equation the model can describe the damping characteristics of real
materials over a wide frequency range using only four material parameters (in the uniaxial case).
Finite element equations governing the total displacement field and the volution of the anelastic
field are outlined. The formulation requires boundary conditions on both the total and the anelastic
displacement fields. The boundary conditions on the total displacement fields are the common
ones in elastodynamics. The anelastic displacement field is treated as an internal field and is
therefore only forced by the coupling to the total displacement field (see Lesieutre and Bianchini,
1995). The total and the anelastic fields are assumed to have equal spatial variation. With the
present formulation the anelastic nodal degree-of-freedom vector is coupled to the total nodal
degree-of-freedom vector through a convolution integral with a kernel of Mittag—Leffler function
type. The anelastic matrices in the FE-formulation can then be restrained in the same manner as
the standard stiffness matrix. A time integration algorithm for solving the FE-equations is
developed. The Griinwald algorithm, for numerical fractional-order differentiation together with
the Backward Euler rule are used for the time integration of the anclastic displacement field,
whereby the Newmark algorithm is employed for the time integration of the structural responses.



M. Enelund, G.A. Lesieutre | International Journal of Solids and Structures 36 (1999) 44474472 4471

The use of the FE-formulation and the algorithm is exemplified in some numerical examples
concerning the response of a viscoelastic bar. To avoid the difficulties with boundary conditions
on the anelastic field an alternative FE-formulation and algorithm for solving the FE-equations is
outlined. The concept of anelastic displacement fields in not used. Instead we use the anelastic
strain as the unknown internal variable. The constitutive response is then obtained by use of the
Griinwald algorithm together with the Backward Euler rule, whereby the structural response is
integrated by the Newmark method.
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